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ABSTRACT

This paper deals with the analytical investigatidra mathematical model to study the time depengenbus
convection in a densely packed porous layer. Haeemedium is not only a two-phase system but lésa modulated
environment. The model happens to be a Darcy muadl the stress free planar boundaries. Stabilitalygsis is
performed in detail by the extended Stuart-Davehméque in order to know the qualitative as welltlas quantitative
features of the phenomenon. The time variatiomisoduced by oscillating the layer in the verticidection. All the
physical quantities like, volume expansion coeffitj kinematic viscosity, permeability, thermal fdgivity etc. are

assumed to be constants. The profiles of velocitytamperature strongly depend on the type of nadidul.
KEYWORDS: Time Dependent Flows, Densely Packed Porous Lajedulated Environment
1. INTRODUCTION

The classical problem of Rayleigh-B’enard convettio a horizontal and symmetric fluid/porous layeith
temperatures prescribed on the boundaries hastbeesubject of numerous investigations owing tonitde applications
in science, engineering and industrial areas. ¢h the study is of utmost importance in geophysiastrophysical and
heat transfer problems. Further, the extractioeradrgy from geothermal sources is the most progiieime among the
other methods. It is believed that the fluids iesh reservoirs are highly permeable and consistautifcomponents rather
than a single component. Actually, the study ofvemtion in a fluid saturated porous layer is al$anterest since it
provides a convenient means for experimentallyrdateng the nonlinear effects such as, the prefeo@l pattern, heat
and mass transport etc. The advantage of consgdpdrous media is that the depth of the layer eagreatly increased
(when compared to a fluid layer) since the friciibforce is much larger. A thorough understandifigg@ophysical,
astrophysical and meteorological convection procegaires a good knowledge of the role played lavity modulation
on convective motions in fluid and porous layerdamthe influence of external constraints like tiotg salinity gradient,
magnetic field etc. The present study is mainlycesned with time —dependent porous convection. t€hbniques and
analysis with regard to stability or instability aftime-dependent basic state are fairly well ustded. In such cases, the
governing perturbation equations can be lineara®tlthe onset conditions can be easily determifileid. condition gives
a sufficient condition for the basic state to betahle. However, the case of instability problenthvéd time-dependent
basic state is quite complicated. Therefore, thablem of instability of a time-dependent basic estahs received less
attention. The reason may be due to the difficaligountered in the mathematical formulation ofgheblem with regard

to the stability criterion, since the basic stea grow (or decay) simultaneously with the growtla disturbance.
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Gravity modulation occurs when a fluid / a poroagelr is subject to vertical oscillations. In theseaf a single
component fluid under gravity modulation, therears important distinction between modes of instgbitiepending on
whether the system is stable or unstable in theradgsof modulation. The fundamental mode of instghexists if the
unmodulated system is unstable. That is, this foveddal instability persists if the modulation artygdie is small enough.
In general, a distribution of stratifying agencigst is convectively stable under constant gragibydition can be
destabilized when a time-dependent component ofgtleitational field is introduced. In fact, thefexft of gravity
modulation of a convectively stable configuratiancsignificantly influence the stability of the s by increasing or
decreasing its sucesseptibility to convections linteresting to note that this is a new way oftadling the stability of a
system and is dependent on the magnitude of thditad® or frequency of the modulation [1]. [2] haused the
Galerkin’s method to treat the linearized planespuoille flow with a modulated pressure gradienth@& made a study of
the stability of a horizontal layer of fluid heat']dm below with a steady temperature differencevieen the walls of the
layer and time-dependent sinusoidal perturbatiquliegh to the wall temperatures. Encouraged by thide experimental
observations, [4] has made a study of the instglaind growth of disturbances in a fluid layer ihigh the temperature
gradient may be a function of depth and time. Tdredoing discussion deals with linear theory ofyHas made a study
of finite amplitude instability of time-dependeribwWs, by employing the extension of [6] techniqUdie amplitude
equation is derived without making any assumptiegarding the relative time scale of the basic stdten compared to
the growth rate of a disturbance. [7] Have madeheoretical as well as experimental observationsarding
time-dependent heating experiments. [8] Have stluthe effect of sinusoidal gravity modulation om thnset of solutal
convection during vertical directional solidificati of a binary alloy by neglecting the thermal ef$e [9] Has investigated
finite amplitude thermal convection with spatiattyodulated boundary temperatur§s0] have conducted experimental
investigations and numerical simulations concufyeah two types of systems viz., (i) single ang @buble-diffusive
convection systems under gravity modulation, ineori study the resonance effect. [11] has madextansive study of
steady and oscillatory instability in a densely kgt porous layer of infinite extent in the presemderotation by
considering linear as well as nonlinear systemaqfations A critical survey of the literature peniag to the subject
reveals that very sparse literature is availabhtapeng to the linear theory and no analytical kvor the nonlinear regime
is available, which is absolutely essential for therough understanding of the phenomenon. Therefire present
investigation is carried out to provide an ovemtlture of the phenomenon by considering in detedl theory of time -

dependent flows in a gravity modulated environment.
2. MATHEMATICAL FORMULATION

The physical configuration consists of a denselykpd fluid saturated porous layer confined betweeribfinite
horizontal planes that are stress free and kepbragtant temperatures. The mean distance betweetwthplates is‘d’.
Further, the lower plate is at a temperature Whereas the upper plate is at a temperatyr@ith T,>T.. The whole

system is under gravity modulation so that

g=0,(1-g(t))k
(1)

The governing equations of motion in the dimengesliform are:

The conservation of momentum
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Lo 1) -
(—p 1E—p—jq +(1-g(t)ROk-DOp=0 @
L

The conservation of energy

[—%+D2je—wfz :qDDH—(W?)Z )
The conservation of mass U, +V, +W, = 0 ) (4
The equation of state p = p, (1—0’(T -T, )) (5)

Here g : the gravitational acceleratiol,: the constant part of the gravity; g(t): thme-dependent part due

to oscillation; t:the time;k: the unit vector in the z-direction; T: the temgdeare ; p, po : the density and the mean

density of the fluid;k: the thermal diffusivity

Where (5) is in the dimensional form and v, K and py are the constant coefficients of thermal expansion,

kinematic viscosity, thermal diffusivity and refaoe density of the fluid respectively.

The scales used in making the equations dimensigiale:

2
Length 9 ; Velocit ﬂ ; Tem erature'ﬂ ; Time: _d ; PressurePOKWt2 (6)
g . 77_ y y. d ) p . T , . 772/( y . d2

In the process of non-dimensionalization the follggwdimensionless parameters appear:

_ aBgOd4
- Rayleigh ber ;
A ayleigh number

P = Vv
- P Prandtl number;
P = 12k
L~ d2 : Porous Parameter / Darcy numbe @)

Further, a bar indicates the horizontal averagewfte from the equation of the conservation ofrgge

0. 0 \=_[—

4+ T =(w9) ®)
ot 0z z

Here T is the horizontal average ofahdd = T — T .

The analysis is restricted to the case of two-dsmaral flow only under the limit of Prandtl numkending to

infinity. The above assumption enables us to haeesblutions in the closed form. We now write (@)the component
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form so that

40 1 op
- - u-ZH= 9
( P o pLj ox ©
40 1 op
-pt——-— |w+(l-g(t))RE-—=0 10
0L e a-alRo- !

The pressure is eliminated, so that we have thevioig:

1

—D%w-{1-g(t))RE, =0 (11)

I:)L

(—%+D2je—wi =ué, +wé, —(W?)Z (12)
0 0% )\

( o +EJT = (wa), (13)

u, +w, =0 (14)

The above set of equations will be solved in the@io-o < x <o, 0<z<Tm t>0.
Boundary Conditions
The horizontal boundaries are assumed to be platmass-free and perfectly conducting so that

w=u=0=0 onz=07 (15)

T(Ot)=n;T(nt)=0 (16)

The problem will be completely specified only whime initial conditions are imposed. The two timgioas
emerge from the asymptotic analysis in the smathpeter(R-R,) * range where Ris the critical value of the Rayleigh
number corresponding to the linear theory. Sinhe, dnalysis is restricted to a single wave-numbethé x-direction
(i.e. only a single disturbance), the linear thegrgws in the ‘inner’ layer. Thus the evolution this mode will be

considered in the outer region. Therefore, the @gmate initial conditions are given by

wWix, Zz. 0) = W, cosax sinz.

ux, z, 0) = Uy sinox cosz

(17)

Where
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o (a2 +1) W, a8
o P, (1—g(0))a2R
And UO= -W,a * (19)

Are the compatibility conditions. On obtaining (I&)d (19), the initial conditions (with finite nuebof modes)

appropriate to the ‘outer layer’ are imposed argdrésults of the linear theory are anticipated.

3. THE EXPANSION PROCEDURE

In this section, the linearized problem is consdesind the basic state solution is given by

q=0, T= 5(2 and 6=0 (20)

Where, To(z) :—(Z—n) (21)

We now consider the linearized system given by

1( a2 ~ 5
F(E - aszl +a’R(1-g(t))g, =0 (22)
L
0 0° ~A
(_Fa?-azj 1, =0 @)
With
\7v1=él=00nz=0n 24)

In the above set of equations, the x-dependencallathe variables is considered in the forn®“* and

aIsoToZ = —1. We seek the solution to the system of equatid@s o (24) in the form;

0o O
(w1,61]= [F(1).G,(9)] exp(a Hsin (25)

With the condition that fand Gmust satisfy:

_PLL( 2+1)F,+a?R(1-g(1))G, = 0 (26)
d
—{a+(ao+a2+l)}Gl+Fl:O (27)

The solutions of (26) and (27) are:
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o’R P
G, (t)=G,(0 - L
1() l()ex ( +1)J-9(§; (28)
=2 RA-IOIR o (29)
(a?+1)
2/ _
Where ag :M (30)
(a?+2)
_ (a®+1)?
R =X~ ~—/
L asz (31)

A careful observation of the solutions reveals,that

e The solutions are composed of the products of tarbspviz.exp(at) and a time bounded factor whenever g is

integrable on(), oo]
» The permeability has its strong influence on &l féctors and
» The factor exp (#) represents the exponential growth of the pedtiobs and the growth rate.
5. RESULTS AND DISCUSSION
The results of the present study are presentedyurd-1 to Figure 5
In Figure 1 and Figure 2, the graphs of velocityfibes F; (t) vs. t forpi =103,
L

g (t) = 0.2exp (-t) and 0.2sin (t) respectively platted for different values of R. The patterroagly depends on
the type of modulation considered. For g (t) = @ét), F1 (t) decreases in the range 05 and then remains constant
for all values Of R. Further Ht) decreases with R (Figure 1). In Figure 2, ¢heve is sinusoidal and in both cases the

region of validity of t is quite large.

1
In Figure 3 the graph of Qt) vs R for t =5, 15, 25; andP— =10%is plotted. Obviously, the curve is linear and
L

G; (t) decreases with R.
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g(t) = 0.2exp(-t)
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g(t) = 0.2sin(t)
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g(t) = 0.2exp(-t)
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Figure 4

a(t) = 0.2sin(t)
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Figure 5

In Figure 4 and Figure 5, the graphs of temperapuddiles G(t) vst of the modulation g(t) = 0.2exp(-t),

1
0.2sin(t) forP— =10%and different values of R is plotteth Figure 4 G (t) decreases with t initially and thereafter
L

remains constant. But, in Figure 5 the profile iisusoidal. The results are in agreement with thecadis case[5] i.e

1
at— = 0 From the above results it is concluded that byaper choice of g (t), Pand R, it is possible to have a good
L

control over the time-dependent porous convecthenpmenon considered here.

The work throws light on the qualitative as wadlthe quantitative aspects of the problem.
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